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1. (Exercise 3.4.12 of [BS11]) Show that if {z,} is unbounded, then there exists a

1
subsequence {xz,, } such that lim [ — ) = 0.
ng
2. (Exercise 3.4.14 of [BS11]) Suppose {z, } is a sequence which is bounded from above.
Let s = sup{z,}. Show that either s = zy for some N € N sufficiently large, or
that there is a subsequence z,, so that z,, — s as k — 4o0.

3. (Exercise 3.4.15 of [BS11]) Let {I, := [an,bn]} be a nested sequence of closed
bounded intervals. For each n € N, let x, € [,. Use the Bolzano-Weierstrass
Theorem to prove the Nested Intervals Theorem.
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3. (Exercise 3.4.14 of [BS11]) Suppose {z,} is a sequence which is bounded from above.
Let s = sup{z,}. Show that either s = zy for some N € N sufficiently large, or
that there is a subsequence x,, so that x,, — s as k — +4o0.
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4. (Exercise 3.4.15 of [BS11]) Let {I, := [a,,b,]} be a nested sequence of closed
bounded intervals. For each n € N, let x,, € I,. Use the Bolzano-Weierstrass

Theorem to prove the Nested Intervals Theorem.
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